Bercovitz A, et al. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains. Appl. Environ. Microbiol. 56: 1594-1597, 1990. PubMed: 2383004
Schwartz RD. Microbial production of hydroxylated biphenyl compounds. US Patent 4,153,509 dated May 8 1979
Gadsby B, Greenspan G. C-21 hydroxylation products of steroids. US Patent 3,529,000 dated Sep 15 1970
Gibian H, et al. Production of optically active antipodes. US Patent 3,562,112 dated Feb 9 1971
Arfmann HA, Abraham WR. Microbial reduction of aromatic carboxylic acids. Z. Naturforsch. Sect. C Biosci. 48: 52-57, 1993.
Auret BJ, Holland HL. Microbiological 18-hydroxylation of steroids. J. Chem. Soc. Commun. 1195: 1157, 1971.
Roukas T. Production of citric acid from beet molasses by immobilized cells of Aspergillus niger. J. Food Sci. 56: 878-880, 1991.
Drysdale CR, McKay AM. Citric acid production by Aspergillus niger in surface culture on inulin. Lett. Appl. Microbiol. 20: 252-254, 1995. PubMed: 7766122
Ibrahim AR, Abul-Hajj YJ. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478, 1990. PubMed: 2089118
Tran CT, et al. Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World J. Microbiol. Biotechnol. 14: 399-404, 1998.
Heinrich M, Rehm HJ. Formation of gluconic acid at low pH-values by free and immobilized Aspergillus niger during citric acid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 15: 88-92, 1982.
Doelger WP, Prescott SC. Citric acid fermentation. Ind. Eng. Chem. 26: 1142-1149, 1934.
Betts RE, et al. Microbial transformations of antitumor compounds. I. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J. Med. Chem. 17: 599-602, 1974. PubMed: 4829940
Hang YD, Woodams EE. Apple pomace: a potential substrate for citric acid production by Aspergillus niger. Biotechnol. Lett. 6: 763-764, 1984.
Roukas T, Kotzekidon P. Production of citric acid from brewery wastes by surface fermentation using Aspergillus niger. J. Food Sci. 51: 225-228, 1986.
Hoffmann JJ, et al. Hydroxygrindelane derivatives by microbial transformation. Phytochemistry 27: 2125-2127, 1988.
Arfmann HA, et al. Microbial omega-hydroxylation of trans-nerolidol and structurally related sesquiterpenoids. Biocatalysis 2: 59-67, 1988.
Roukas T, Alichanidis E. Citric acid production from beet molasses by cell cycle of Aspergillus niger. J. Ind. Microbiol. 7: 71-74, 1991.
Hoffmann JJ, et al. Formation of grindelane dimers by microbial transformation. Phytochemistry 31: 3045-3049, 1992.
Ibrahim AR, Abul-Hajj YJ. Microbiological transformation of (+/-)-flavanone and (+/-)-isoflavanone. J. Nat. Prod. 53: 644-656, 1990. PubMed: 2213034
Miura S, et al. Prostaglandin chemistry -- IV. Microbiological kinetic resolution and asymmetric hydrolysis of 3,5-diacetoxycyclopent-1-ene. Tetrahedron 32: 1893-1898, 1976.
Kiel H, et al. Citric acid fermentation by Aspergillus niger on low sugar concentrations and cotton waste. Appl. Environ. Microbiol. 42: 1-4, 1981.
Martinez-Culebras PV, et al. Molecular characterization of the black Aspergillus isolates responsible for ochratoxin A contamination in grapes and wine in relation to taxonomy of Aspergillus section Nigri. Int. J. Food Microbiol. 132: 33-41, 2009. PubMed: 19401261
|